Somamides A and B, Two New Depsipeptide Analogues of Dolastatin 13 from a Fijian Cyanobacterial Assemblage of Lyngbya majuscula and Schizothrix **Species**

Lisa M. Nogle, R. Thomas Williamson, and William H. Gerwick*

College of Pharmacy, Oregon State University, Corvallis, Oregon 97331

Received December 29, 2000

Somamides A (1) and B (2) were isolated from assemblages of the marine cyanobacteria Lyngbya majuscula and Schizothrix sp. from the Fijian Islands. These new depsipeptides are analogous in structure to the cyanobacterial metabolite symplostatin 2 (4) as well as dolastatin 13 (3), originally isolated from Dolabella *auricularia*, further demonstrating the cyanobacterial origin of the dolastatins.

Marine cyanobacteria are known for their ability to produce a great diversity of unique secondary metabolites, especially lipopeptides which incorporate modified amino acid moieties, such as the majusculamides,¹ lyngbyastatins,² and hormothamnins.³ Similarly, the dolastatins are an intriguing group of polypeptides, frequently containing ketide extended residues, which possess exceptional cytostatic and antineoplastic activity.⁴ Although originally isolated in minute quantities from the herbivorous mollusc Dolabella auricularia, it has become evident that such metabolites truly originate in cyanobacteria.⁵ Examination of the lipid extracts from mixed assemblages of the marine cyanobacteria Lyngbya majuscula and Schizothrix species, collected in the Fijian Islands, led to the discovery of two new depsipeptides (1, 2) with strong structural homology to dolastatin 13 (3).⁶ Herein we report the isolation and structure elucidation of somamides A (1) and B (2).

Results and Discussion

Fractionation of a crude organic extract from a Somo Somo, Fiji, collection of *L. majuscula* and *Schizothrix* sp., followed by C18 solid-phase extraction (SPE) and reversedphase HPLC afforded somamide A (1) as a clear oil. The IR spectrum of 1 displayed strong absorption bands at 1730 and 1641 cm⁻¹, indicating the presence of ester and amide functionalities. The molecular composition of 1 was determined as C₄₈H₆₇N₇O₁₂S by HRFABMS (m/z 948.4587 for $[M + H - H_2O]^+$), and ¹H and ¹³C NMR spectra were indicative of a depsipeptide (Table 1).

Analysis of HSQC, COSY, HSQC-TOCSY, and HMBC spectra allowed for the construction of eight partial structures which accounted for all of the atoms in 1. Four standard amino acid residues were deduced as phenylalanine, N-methyltyrosine, threonine, and valine. The presence of the more unusual moieties, 2-amino-2-butenoic acid (Abu) and 3-amino-6-hydroxy-2-piperidone (Ahp), were also deduced by 2D NMR and suggested the close relationship of 1 to the previously isolated cyanobacterial metabolite symplostatin 2 $(4)^7$ as well as the depsipeptide dolastatin 13 (3).⁶ The two remaining partial structures were deduced as hexanoic acid and a methionine sulfoxide, observed as a 1:1 mixture of R and S sulfoxide diastereomers (Table 1). It is possible that this diastereomeric mixture formed during the isolation process from a naturally occurring methionine residue.

Correlations observed in the HMBC spectrum of 1 allowed for the formation of the partial sequences Val-N-Me-Tyr-Phe-Ahp and Thr-Met(O)-hexanoic acid. A ROESY correlation observed between the Abu N5-H and H35 linked

© 2001 American Chemical Society and American Society of Pharmacognosy Published on Web 05/18/2001 10.1021/np000634j CCC: \$20.00

^{*} To whom correspondence should be addressed. Tel: 541 737 5801. Fax: 541 737 3999. É-mail: Bill.Gerwick@orst.edu.

unit	no.	1 H (J in Hz)	¹³ C	HSQC-TOCSY ^a	HMBC ^b
Val	1		172.5, s		
	2	4.74, d (11.3)	55.5, d	3, N ₁	6
	3	2.09, m	30.5, d	2, 4, 5	1, 4, 5
	4	0.75, d (6.9)	16.9, q	3, 5	2, 3, 5
	5	0.88, dd (6.9, 2.3)	18.9, q	3, 4	2, 3, 4
	N_1	7.47, brs			
N-Me-Tyr	6		169.2, s		
0	7	4.91, d (11.7)	60.4, d	8	6, 8
	8	3.08, 2.70	32.5, t	7	7, 9, 10/14
	9		127.0, s		
	10/14	6.99, d (8.4)	130.1, d	11/13	8, 11/13, 12
	11/13	6.76. d (8.3)	114.9. d	10/14	9.12
	12		155.8. s		- ,
	15	2.76. s	30.0. g		7
Phe	16		170.0. s		
	17	4.74. d (11.3)	49.8. d	18	16, 18, 19, 25, 29
	18	2.78, 1.81	34.9. t	17	17, 19, 20/24
	19	200, 101	136.3 s		11, 10, 20, 21
	20/24	6 84 d (7 3)	129 0 d	21/23	18 21/23 22
	21/23	7 14 m	127.4 d	20/24 22	19 20/24
	22	7.18 m	125.8 d	21/23	20/24
Δhn	25	7.10, m	168.9 s	wirwo	20/21
mp	26	3 79 m	47.8 d	27 28 N	
	27	2 41 1 57	21.5 t	26 28 N	
	28	1 70 1 57	28.9 t	27 29	
	20	5.07 brs	20.3, t 73.2 d	28 OH	25
	25 N.	7 10	75.2, u	20, 011	20
	OH	6.08 brs			
Abu	30	0.00, DIS	162 1 s		
Abu	31		190 0 c		
	22	652 a (71)	123.3, S 121.7 d	22	20 21 22
	32	1.50 d(7.1)	199 a	29	20 21 22
	33 N.	0.21 brs	12.8, q	32	30, 31, 32
Thr	1N5 24	5.21, DIS	172 / 5		
1111	34	4 52 m	173.4, S	26 N.	
	35	4.33, III 5.59 brs	55.5, u 71.2 d	30, IN6 25 27	
	30	1.32, DIS 1.25 d (6.6)	17.5 g	35, 57	25 26
	37 N.	7 80	17.5, q	30	33, 30
$M_{ot}(\Omega)$	1N6 20	7.69	179 1		
Met(O)	30	1.69 m	172.1, S 51.7 50.0 cd	40 41 N	20
	39	4.02, III 1.05 1.00 m	31.7, 30.0, 4	$40, 41, 1N_7$	30 20 41
	40	1.95, 1.90, III 2.70, 2.70,	24.4, 24.1,°l	41	39, 41
	41	2.79, 2.70, III 2.52, 2.51 (c	49.3, 48.9,° l	39, 40	39
	42 N.	2.33, 2.31, 8	s1.1, y		41
1	IN7 40	8.14, Drs	174.4		
nexanoic acid	43	9.14	1/4.4, S	45 40/47 40	49 45 40
	44	2.14, m	34.0, t	45, 46/47, 48	43, 45, 46
	45	1.00	24.3, t	44, 46/47, 48	43, 44, 46, 47
	40	1.28	30.5, t	45, 48	
	4/	1.28	21.5, t	48	4.7
	48	0.86, t (7.0)	13.5, q	46/47	47

Table 1. NMR Spectral Data for Somamide A (1) in DMSO-d₆

^{*a*} Proton showing TOCSY correlation to indicated proton. ^{*b*} Proton showing HMBC correlation to indicated carbon. ^{*c*} Indicates the presence of multiple conformers.

this moiety to the Thr residue. However, FABMS fragmentation was instrumental in completion of the planar structure of somamide A. A peak at m/z 503, corresponding to the fragment *N*-Me-Tyr-Phe-Ahp-Abu, and a peak at m/z295 for the fragment Thr-Abu-Ahp were both observed, thereby placing the Abu unit between Thr and Ahp. Fragment ions at m/z 420 and 348, corresponding to *N*-Me-Tyr-Phe-Ahp and Thr-Met(O)-hexanoic acid, respectively, were also detected and further supported the HMBC sequence assignments. The final degree of unsaturation of 1 required a connection between the Val carbonyl (C₁) and the Thr hydroxyl (C₃₆-OH), thereby completing the planar structure of somamide A.

The absolute stereochemistries of the residues in somamide A were determined by Marfey's analysis⁸ and indicated that the Val, *N*-Me-Tyr, Phe, Thr, and Met (analyzed as the sulfoxide) were all of *L* configuration. The absolute configuration of C_{26} (Ahp) could not be determined by Marfey's analysis despite several attempts to isolate the corresponding Glu residue following oxidation and acid hydrolysis of **1**.⁷ However, proton and carbon chemical shifts for the Ahp unit of **1** were nearly identical to those observed in symplostatin 2 (**4**). In addition, ROESY correlations observed throughout the Ahp ring and between H_{17} (Phe) and H_{29} (Ahp) supported a 26S,29R configuration, analogous to the stereochemical assignments in symplostatin 2 (**4**).⁷ Hence, in summary somamide A (**1**) was determined to possess 2S,7S,17S,26S,29R,35S,36R,39S stereochemistry.

The N₅-H of the Abu residue did not show a ROESY correlation to either the C_{32} methine or the C_{33} methyl protons, preventing determination of the double bond geometry by homonuclear dipolar coupling. However, this was circumvented by application of a 1D HSQMBC experiment from which a coupling constant of 3.5 Hz between the methine proton, H₃₂ (6.53), and C₃₀ (162.1) was measured, thus establishing the geometry as Z.⁹

A second organic extract from a similar *L. majuscula*/ *Schizothrix* sp. cyanobacterial assemblage, collected near Taveuni Island, Fiji, was fractionated over LH-20 and

Table 2.	NMR S	pectral	Data	for	Somamide	В	(2)	in	DMSO-	d_6
----------	-------	---------	------	-----	----------	---	------------	----	-------	-------

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	unit	20	1 U (<i>L</i> in Uz)	13C	USOC TOCSVa	LIMPC ^b
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	um	110.	-11 (5 111 112)		115QC-10C31-	TIVIDC
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Val	1		174.9, s		_
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		2	4.71, d (11.6)	55.7, d	N_1	6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		3	2.06	30.7, d	4, 5	1, 5
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		4	0.75, d (6.8)	17.1, q	5	2, 3, 5
$\begin{tabular}{ c c c c c c c } & N.Me Tyr & 6 & 169.4, s & 6 & 6 & 8 & 3.08, 2.70 & 32.5, t & 7 & 7, 9, 10/14 & 9 & 12.5, s & 7, 9, 10/14 & 9 & 12.5, s & 10/14 & 9, 12 & 11/13 & 6.75, d (8.3) & 115.0, d & 11/13 & 8, 11/13, 12 & 11/13 & 6.75, d (8.3) & 115.0, d & 10/14 & 9, 12 & 12 & 150.0, s & 10/14 & 9, 12 & 12 & 150.0, s & 7, 16 & 10/14 & 10, 12, 29 & 130.1, d & 11/13 & 10, 20/24 & 160.0, s & 7, 16 & 10/14 & 9, 12 & 12 & 12 & 120 & 12$		5	0.86	18.9, q	3, 4	2, 3, 4
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		N_1	7.44, brs			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	<i>N</i> -Me-Tyr	6		169.4, s		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		7	4.89, d (11.3)	60.4, d	8	6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		8	3.08, 2.70	32.5, t	7	7, 9, 10/14
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		9		127.3, s		
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		10/14	6.97, d (8.3)	130.1, d	11/13	8, 11/13, 12
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		11/13	6.75, d (8.3)	115.0, d	10/14	9, 12
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		12		156.0, s		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		15	2.75, s	30.1, q		7, 16
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Phe	16		170.3, s		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		17	4.73, d (11.3)	49.9, d	18	16, 25, 29
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		18	2.86, 1.81	35.0, t	17	17, 19, 20/24
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		19		136.6, s		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		20/24	6.83, d (7.2)	129.0, d	21/23	18, 22
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		21/23	7.17, m	127.5, d	20/24, 22	19, 20/24
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		22	7.13, m	125.9, d	21/23	20/24
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ahp	25		168.8, s		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		26	3.78, m	47.9, d	27, N ₄	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		27	2.39, 1.54	21.7, t	26, 28	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		28	1.68, 1.54	28.9, t	27, 29	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		29	5.07, brs	73.5, d		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		N_4	7.11			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		OH	6.06, brs			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Abu	30		162.5, s		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		31		129.9, s		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		32	6.51, q (7.1)	131.5, d	33	30, 31, 33
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		33	1.49, đ (7.1)	12.8, q	32	31, 32
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		N_5	9.18, brs	•		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Thr	34		175.6, s		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		35	4.54, m	55.5, d	36, N_6	34
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		36	5.42, brs	71.4, d	37	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		37	1.22, d (6.2)	17.9, q	36	35, 36
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		N_6	7.88	•		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Gln	38		171.3, s		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		39	4.38, m	51.9, d	40, 41, N ₇	43
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		40	1.94, 1.76	22.4, t	39, 41	38, 39, 42
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		41	2.11	31.2, t	40	39, 42
N7 8.04, brs butanoic acid 43 172.3, s 44 2.11, m 36.8, t 45, 46 45 1.52, m 18.4, t 44, 46 46 0.85 13.4, q 45		42		173.6, s		
butanoic acid 43 172.3, s 44 2.11, m 36.8, t 45, 46 43, 45, 46 45 1.52, m 18.4, t 44, 46 43, 44, 46 46 0.85 13.4, q 45 44, 45		N_7	8.04, brs			
442.11, m36.8, t45, 4643, 45, 46451.52, m18.4, t44, 4643, 44, 46460.8513.4, q4544, 45	butanoic acid	43	-	172.3, s		
451.52, m18.4, t44, 4643, 44, 46460.8513.4, q4544, 45		44	2.11, m	36.8, t	45, 46	43, 45, 46
46 0.85 13.4, q 45 44, 45		45	1.52, m	18.4, t	44, 46	43, 44, 46
		46	0.85	13.4, q	45	44, 45

^a Proton showing TOCSY correlation to indicated proton. ^b Proton showing HMBC correlation to indicated carbon.

further purified by C₁₈ SPE and reversed-phase HPLC to yield a small quantity (<0.5 mg) of somamide B (2). The molecular formula of 2 was determined as C₄₆H₆₂N₈O₁₂ by HRFABMS (m/2901.4473 for $[M + H - H_2O]^+$). Extensive analysis of 2D NMR spectra again allowed deduction of eight partial structures corresponding to Gln, Phe, N-Me-Tyr, Val, Thr, Ahp, Abu, and butanoic acid (Table 2). Correlations observed in the HMBC allowed for the formation of a Val-N-Me-Tyr-Phe-Ahp sequence and a Glnbutanoic acid sequence. ROESY correlations observed between the Val N1-H and N-Me-Tyr H7, the N-Me-Tyr H7 and Phe H₁₇, and the Phe H₁₇ and Ahp H₂₉ confirmed this partial sequence. Likewise, ROESY correlations observed between the Ahp N₄-H and Abu N₅-H, the Abu N₅-H and Thr H₃₅, and the Thr N₆-H and Gln H₃₉ provided the sequence Val-N-Me-Tyr-Phe-Ahp-Abu-Thr-Gln-butanoic acid. Therefore, the ring closure of Val-Thr once again satisfied the molecular formula and completed the planar structure of somamide B (2). A ROESY correlation was observed between the Abu N5-H and the C33 methyl protons, indicating a Z geometry for the double bond in this residue. Due to the minute quantity of somamide B, Marfey's analysis to determine absolute stereochemistry was not performed.

Somamides A (1) and B (2) demonstrate the extensive biosynthetic capabilities of marine cyanobacteria to produce secondary metabolites of novel structure, in particular, products of the nonribosomal peptide synthetase pathway (NRPS). Similar metabolites (e.g., dolastatin 13 (3))⁶ have previously been reported from marine invertebrates, including the sea hare, *D. auricularia*, well known for its ability to sequester compounds acquired from its diet of cyanobacteria.⁵ Thus, isolation of these depsipeptides provides further evidence that such metabolites are truly of cyanobacterial origin.

Experimental Section

General Experimental Procedures. All NMR spectral data were recorded on a Bruker DRX600 spectrometer operating at a proton frequency of 600.01 MHz and a carbon frequency of 150.90 MHz, with the solvent used as an internal standard (DMSO- d_6 at δ 2.49 and 39.51). Mass spectra were recorded on a Kratos MS50TC mass spectrometer. IR spectra were recorded on a Nicolet 510 Fourier transform IR spectro-

photometer, and optical rotations were measured on a Perkin-Elmer 141 polarimeter. HPLC isolation of compounds 1 and 2 was performed using a Waters Millipore Lambda-Max model 480 LC spectrophotometer with a Waters Millipore model 590 pump.

Collection. The mixed assemblages of *Lyngbya majuscula* and Schizothrix sp. marine cyanobacteria (voucher specimens available from WHG as collection numbers VSO-8 Feb 97-2 and VTI-9 Feb 97-2) were collected near Somo Somo, Fiji (3-6 m depth), and Taveuni Island, Fiji (12-18 m depth), on February 8 and 9, 1997. The material was stored in 2-propanol at reduced temperature until workup.

Extraction and Isolation. Approximately 43 g (dry wt) of the algal material from Somo Somo was repetitively extracted with CH₂Cl₂/MeOH (2:1) to yield 1.3 g of crude extract. The extract was fractionated by VLC over Si gel. Fractions eluting between 90% EtOAc in hexanes and 5% MeOH in EtOAc were further purified, first by C₁₈ SPE cartridge (MeOH/H2O, 7:3) followed by reversed-phase HPLC (MeOH/H₂O, 3:1, Phenomenex Sphereclone ODS, 250×10 mm, 5μ), to yield 3.1 mg of somamide A (1). Similarly, 87 g (dry wt) of the Taveuni Island collection was extracted, producing 2.1 g of crude extract. This extract was fractionated over LH-20 (3 \times 40 cm column) using 100% MeOH. An early eluting fraction was further purified, first by C₁₈ SPE cartridge (MeOH/H₂O, 7:3) and then by reversed-phase HPLC (MeOH/ H₂O, 3:1, Phenomenex Sphereclone ODS, 250×10 mm, 5μ), to yield 0.5 mg of somamide B (2).

Somamide A (1): glassy oil; $[\alpha]^{22}_{D} - 2.5^{\circ}$ (*c* 0.08, MeOH); IR (neat) 3370, 3270, 2930, 2852, 1730, 1641, 1535, 1516, 1202, 1025 cm⁻¹; ¹H and ¹³C NMR data, see Table 1; FABMS (in 3-nba) m/z 988 (85), 948 (100), 884 (6), 703 (6), 503 (7), 420 (24), 348 (9), 295 (8), 246 (36), 226 (38), 150 (63), 99 (18), 56 (96); HRFABMS m/z [M + H - H₂O]⁺ 948.4587 (calcd for C48H66N7O11S, 948.4541).

Somamide B (2): glassy oil; [α]²²_D -10.2° (*c* 0.05, MeOH); IR (neat) 3365, 3296, 3271, 2927, 2858, 1731, 1640, 1534, 1446, 1203, 1075 cm⁻¹; ¹H and ¹³C NMR data, see Table 2; FABMS (in 3-nba) m/z 941 (62), 901 (46), 420 (14), 329 (46), 219 (42), 176 (100); HRFABMS m/z [M + H - H₂O]⁺ 901.4473 (calcd for C₄₆H₆₁N₈O₁₁, 901.4460).

Absolute Configuration of Amino Acids in Somamide A (1). Somamide A (0.5 mg) was hydrolyzed with 6 N HCl at 110 °C for 16 h. The hydrolysate was evaporated to dryness and dissolved in H₂O (50 μ L). A 0.1% 1-fluoro-2,4-dinitrophenyl-5-L-alaninamide (Marfey's reagent) solution in acetone

(50 μ L) and 20 μ L of 1 N NaHCO₃ were added, and the mixture was heated at 40 °C for 1 h. The solution was cooled to room temperature, neutralized with 10 μ L of 2 N HCl, and evaporated to dryness. The residue was resuspended in 100 μ L of DMSO/H₂O (1:1), and the solution was analyzed by reversedphase HPLC (Waters Nova-Pak C18, 3.9 × 150 mm, UV detection at 340 nm) using a linear gradient (10% CH₃CN in H_2O containing 0.05% TFA to 50% CH_3CN).

The retention times ($t_{\rm R}$, min) of the derivatized amino acids in the hydrolysate of somamide A matched those of L-Met(O) (18.6), L-Thr (18.9), L-Val (33.0), and L-Phe (38.5) but not D-Met(O) (19.3), D-Thr (23.6), L-allo-Thr (19.4), D-allo-Thr (21.0), D-Val (37.9), or D-Phe (42.7).

A second linear gradient using CH₃CN in 50 mM NH₄OAc (10% to 50% CH₃CN over 60 min) was also performed. The retention time for the derivatized N-Me-Tyr residue matched that of N-Me-L-Tyr (12.8) but not N-Me-D-Tyr (13.9).

Acknowledgment. The authors gratefully acknowledge the Government of Fiji for permission to make these collections, G. H. Hooper and M. Graber for collection of the cyanobacteria, and M. A. Roberts for taxonomic identification. We also thank Brian Arbogast and the EIHS Center at OSU for mass spectral assistance and the National Institute of Health (CA 52955) for financial support of this work.

References and Notes

- (1) (a) Marner, F.-J.; Moore, R. E.; Hirotsu, K.; Clardy, J. J. Org. Chem. 1977, 42, 2815–2819. (b) Carter, D. C.; Moore, R. E.; Mynderse, J.
- (a) Karigara (M. S. 1997) (a) Carlet, D. C., Moore, R. E., Mynders, S. S.; Niemczura, W. P.; Todd, J. S. *J. Org. Chem.* **1984**, *49*, 236–241.
 (c) Moore, R. E.; Entzeroth, M. *Phytochemistry* **1988**, *27*, 3101–3103.
 (a) Harrigan, G. G.; Yoshida, W. Y.; Moore, R. E.; Nagle, D. G.; Park, P. U.; Biggs, J.; Paul, V. J.; Mooberry, S. L.; Corbett, T. H.; Valeriote, P. U.; Biggs, J.; Paul, V. J.; Mooberry, S. L.; Corbett, T. H.; Valeriote, P. U.; Biggs, J.; Paul, V. J.; Mooberry, S. L.; Corbett, T. H.; Valeriote, P. U.; Biggs, J.; Paul, V. J.; Mooberry, S. L.; Corbett, T. H.; Valeriote, P. U.; Biggs, J.; Paul, V. J.; Mooberry, S. L.; Corbett, T. H.; Valeriote, P. U.; Biggs, J.; Paul, V. J.; Mooberry, S. L.; Corbett, T. H.; Valeriote, P. U.; Biggs, J.; Paul, V. J.; Mooberry, S. L.; Corbett, T. H.; Valeriote, P. U.; Biggs, J.; Paul, V. J.; Mooberry, S. L.; Corbett, T. H.; Valeriote, P. U.; Biggs, J.; Paul, V. J.; Mooberry, S. L.; Corbett, T. H.; Valeriote, P. U.; Biggs, J.; Paul, V. J.; Mooberry, S. L.; Corbett, T. H.; Valeriote, P. U.; Biggs, J.; Paul, V. J.; Mooberry, S. L.; Corbett, T. H.; Valeriote, P. U.; Biggs, J.; Paul, V. J.; Mooberry, S. L.; Corbett, T. H.; Valeriote, P. U.; Biggs, J.; Paul, V. J.; Mooberry, S. L.; Corbett, T. H.; Valeriote, P. U.; Biggs, J.; Paul, V. J.; Mooberry, S. L.; Corbett, T. H.; Valeriote, P. V.; Paul, V. J.; Mooberry, S. L.; Corbett, T. H.; Valeriote, P. V.; Paul, V. J.; Mooberry, S. L.; Corbett, T. H.; Valeriote, P. V.; Paul, V. J.; (2)F. A. J. Nat. Prod. 1998, 61, 1221-1225. (b) Luesch, H.; Yoshida, W.
- F. A. J. Nat. Prod. 1998, 61, 1221-1225. (b) Luesch, H.; Yoshida, W. Y.; Moore, R. E.; Paul, V. J. J. Nat. Prod. 1999, 62, 1702-1706.
 (a) Gerwick, W. H.; Mrozek, C.; Moghaddam, M. F.; Agarwal, S. K. Experientia 1989, 45, 115-121. (b) Gerwick, W. H.; Jiang, Z. D.; Agarwal, S. K.; Farmer, B. T. Tetrahedron 1992, 48, 2313-2324.
 (4) Pettit, G. R. Prog. Chem. Org. Nat. Prod. 1997, 70, 1-79.
 (5) Harrigan, G. G.; Luesch, H.; Moore, R. E.; Paul, V.J. Spec. Publ.-R. Score hem. 2000, 257, 126, 126.
- (6) Pettit, G. R.; Kamano, Y.; Herald, C. L.; Dufresne, C.; Cerny, R. L.; Herald, D. L.; Schmidt, J. M.; Kizu, H. J. Am. Chem. Soc. 1989, 111, 5015 - 5017
- (7) Harrigan, G. G.; Luesch, H.; Yoshida, W. Y.; Moore, R. E.; Nagle, D. G.; Paul, V. J. J. Nat. Prod. 1999, 62, 655-658.
- Marfey, P. Carlsberg Res. Commun. 1984, 49, 591-596.
- Williamson, R. T.; Marquez, B. L.; Gerwick, W. H.; Kover, K. E. *Magn. Reson. Chem.* **2000**, *38*, 265–273.

NP000634J